350vip8888新葡的京集团
En
新葡的京集团350vip8888(中国)有限公司·百度百科
高分子材料系
新葡的京集团350vip8888(中国)有限公司·百度百科 首页 - 师资队伍 - 教工名录 - 高分子材料系
高分子材料系

陈攀

姓 名:

陈攀


出生年月:

1985年9月


学 位:

理学博士


电 话:


职 称:

副教授


邮 箱:

panchen@bit.edu.cn

  • 基本信息

           在国际期刊Nano Letter, ACS Nano, J. Mater. Chem. A, Macromolecules,,Biomacromolecules, Cellulose等上共发表论文32篇,第一作者和通讯18篇,使用分子动力学模拟和小角散射技术与实验合作工作13篇,专利一项,其中近五年内发表科研文章共20篇。主持北京市青年基金和国家重点项目。
    讲授课程:
           研究生课程: 1.《计算材料学》 
           本科生课程: 1.《 材料信息学》 2.《物理化学》        
    学术任职:
           国际期刊 J Phys. Chem. Lett, Langmuir, Cellulose, Soft matter, ACS Sustain. Chem. & Engin, ACS Applied Mater. & Inter., Green Chem.等审稿人。

    更多
  • 教育经历

    2009.10~2013.06,法国格勒诺布尔阿尔卑斯大学高分子科学,获得博士学位
    2007.09~2009.06,武汉大学高分子化学与物理专业,获得硕士学位;
    2003.09~2007.06,华中师范大学化学学院应用化学,获得学士学位;

    更多
  • 工作经历

    2019.07~今 350vip8888新葡的京集团, 预聘副教授;
    2016.05~2019.05 瑞典皇家工学院瓦伦堡木材科学中心,研究员;
    2014.04~2016.04 德国亚琛工业大学过程工程学院,博士后;
    2013.10~ 2013.12 法国国家科学研究院植物大分子中心,博士后;
    2017.11~2018.01 橡树岭国家实验室散裂中子源,访问学者;
    2016.06 ~ 2016.06 德国柏林马普所,访问学者

    更多
  • 研究领域

            2009年10月在欧洲科学多边形附近的法国格勒诺布尔第一大学(原傅里叶大学)就读博士,得益于地理优势,使用同步辐射X射线和分子动力学研究《纤维素的晶体结构和物理性质》,随后加入德国亚琛工大《定制生物燃油》项目、瑞典皇家理工《木材纳米技术》项目和美国《生物质乙醇》项目,开发了基于C++的广小角数据分析程序。始终专注并热衷于开发分子动力学模拟方法,使用密度泛函理论,结合同步辐射广小角X射线/中子散射和核磁松弛等实验技术,研究高等植物和纤维素基复合材料中纳米纤维、半纤维素、木质素等的纳米级聚集结构和物理性质等基础科学问题,为分析、分离和加工生物大分子基材料提供理论基础。

    更多
  • 代表论著

    1. 结合小角中子散射和衬度匹配法表征纳米纤维素与合成聚合物高分子的纳米级空间结构分布(Nano. Lett. 2021);
    2.炼金术自由能模拟阐明表面改性致纳米纤维素分散的分散机理(J. Mat. Chem. A. 2020);
    3. 分子动力学模拟结合核磁自旋晶格松弛技术揭示纤维素和半纤维素的结构异质性(Macromolecules 2019 & Biomacromolecule 2018);
    4. 计算中子衍射与分子模拟结合确立纤维素II和III的新氢键结构(Cellulose 2015)。
    5. 原位同步辐射X射线衍射结合分子模拟揭示天然纤维素的固-固相转变热力学原理(Macromolecules 2012)
    论文专著:
    1.Chen P.*#, Li Y.#, Nishiyama Y.*, Pingali V.S., O’Neil, M.H., Zhang, Q., Berglund L.*Neutron small angle scattering shows the PMMA filling the microfibril interstices of transparent wood. Nano Letter.  2021, 21, 7, 2883–2890 (致谢BNL-NSIT-BNL,HFIR-BioSAXS,ESRF-WOS线站)
    2.Chen P.*, Nishiyama Y. *, Wohlert Jakob* Quantifying the influence of dispersion interactions on the elastic properties of crystalline cellulose. Cellulose 2021, 28, 10777–10786
    3.Yu Chen, Xiaotong Fu, Shuxian Yu, Kun Quan, Changjun Zhao, Ziqiang Shao, Dongdong Ye*, Haisong Qi, Pan Chen*. Parameterization of classical nonpolarizable force field for hydroxide toward the large-scale molecular dynamics simulation of cellulose in pre-cooled alkali/urea aqueous solution. Journal of Applied Polymer Science. 2021, 138(48), 51477
    4.Shaoliu Qin, Yian Chen*, Shenming Tao, Cunzhi Zhang, Xingzhen Qin*, Pan Chen*, Haisong Qi*, High recycling performance of holocellulose paper made from sisal fibers, Industrial Crops and Products, 2021, 176,114389 (共同通讯)https://doi.org/10.1016/j.indcrop.2021.114389
    5.Chen, P.; Re, G. L.; Berglund, L. A.; Wohlert, J. Surface Modification Effects on Nanocellulose – Molecular Dynamics Simulations Using Umbrella Sampling and Computational Alchemy. J. Mater. Chem. A 2020, 8 (44), 23617–23627. 
    6.Li, Q.; Chen, P*.; Li, Y.; Li, B.; Liu, S*. Construction of Cellulose-Based Pickering Stabilizer as a Novel Interfacial Antioxidant: A Bioinspired Oxygen Protection Strategy. Carbohydrate Polymers 2020, 229, 115395. 
    7.Chen, P.; Terenzi, C.; Furó, I.; Berglund, L. A.; Wohlert, J.* Quantifying Localized Macromolecular Dynamics within Hydrated Cellulose Fibril Aggregates. Macromolecules 2019, 52 (19), 7278–7288. 
    8.Chen, P.; Terenzi, C.; Furó, I.; Berglund, L. A.; Wohlert, J.* Hydration-Dependent Dynamical Modes in Xyloglucan from Molecular Dynamics Simulation of 13C NMR Relaxation Times and Their Distributions. Biomacromolecules 2018, 19 (7), 2567–2579. 
    9.[Lombardo, S.#; Chen, P.#]; Larsson, P. A.; Thielemans, W.; Wohlert, J.; Svagan, A. J. Toward Improved Understanding of the Interactions between Poorly Soluble Drugs and Cellulose Nanofibers. Langmuir 2018, 34 (19), 5464–5473. 
    10.Wang, Y.; Liu, L.; Chen, P.*; Zhang, L.; Lu, A.* Cationic Hydrophobicity Promotes Dissolution of Cellulose in Aqueous Basic Solution by Freezing–Thawing. Phys. Chem. Chem. Phys. 2018, 20 (20), 14223–14233. 
    11.Chen, P.*; Ogawa, Y.; Nishiyama, Y.; Ismail, A. E.; Mazeau, K.* Iα to Iβ Mechano-Conversion and Amorphization in Native Cellulose Simulated by Crystal Bending. Cellulose 2018, 25 (8), 4345–4355. 
    12.Chen, P.; Nishiyama, Y.*; Wohlert, J.; Lu, A.*; Mazeau, K.; Ismail, A. E.* Translational Entropy and Dispersion Energy Jointly Drive the Adsorption of Urea to Cellulose. J. Phys. Chem. B 2017, 121 (10), 2244–2251. 
    13.Chen, P.; Ogawa, Y.; Nishiyama, Y.*; Ismail, A. E.; Mazeau, K. Linear, Non-Linear and Plastic Bending Deformation of Cellulose Nanocrystals. Phys. Chem. Chem. Phys. 2016, 18 (29), 19880–19887. 
    14.[Chen, P.*#; Marianski, M.*#]; Baldauf, C.* H-Bond Isomerization in Crystalline Cellulose IIII: Proton Hopping versus Hydroxyl Flip-Flop. ACS Macro Lett. 2016, 5 (1), 50–54.
    15.Chen, P.; Ogawa, Y.; Nishiyama, Y.*; Bergenstråhle-Wohlert, M.; Mazeau, K. Alternative Hydrogen Bond Models of Cellulose II and IIII Based on Molecular Force-Fields and Density Functional Theory. Cellulose 2015, 22 (3), 1485–1493. 
    16.Chen, P.; Nishiyama, Y.*; Mazeau, K. Atomic Partial Charges and One Lennard-Jones Parameter Crucial to Model Cellulose Allomorphs. Cellulose 2014, 21 (4), 2207–2217. 
    17.Chen, P.; Nishiyama, Y.*; Putaux, J.-L.; Mazeau, K. Diversity of Potential Hydrogen Bonds in Cellulose I Revealed by Molecular Dynamics Simulation. Cellulose 2014, 21 (2), 897–908. 
    18.Chen, P.; Nishiyama, Y.*; Mazeau, K. Torsional Entropy at the Origin of the Reversible Temperature-Induced Phase Transition of Cellulose. Macromolecules 2012, 45 (1), 362–368. 
    19.Guangjie Song, Christine Lancelon-Pin, Pan Chen, Jian Yu, Jun Zhang*, Lei Su*, Masahisa Wada, Tsunehisa Kimura, and Yoshiharu Nishiyama* Time-Dependent Elastic Tensor of Cellulose Nanocrystal Probed by Hydrostatic Pressure and Uniaxial Stretching. J. Phys. Chem. Lett. 2021, 12 3779–3785
    20.Yian Chen, Yuehu Li, Yu Liu, Pan Chen, Cunzhi Zhang, and Haisong Qi. Holocellulose Nanofibril-Assisted Intercalation and Stabilization of Ti3C2Tx MXene Inks for Multifunctional Sensing and EMI Shielding Applications. ACS Applied Materials & Interfaces 2021 13 (30), 36221-36231.https://doi.org/10.1021/acsami.1c10583
    21.Cheng, Q.; Chen, P.; Ye, D.; Wang, J.; Song, G.; Liu, J.; Chen, Z.; Chen, L.; Zhou, Q.; Chang, C.; Zhang, L. The Conversion of Nanocellulose into Solvent-Free Nanoscale Liquid Crystals by Attaching Long Side-Arms for Multi-Responsive Optical Materials. J. Mater. Chem. C 2020, 8 (32), 11022–11031. (致谢BNL-NIST-LIX线站)
    22.Mianehrow, H.; Lo Re, G.; Carosio, F.; Fina, A.; Larsson, P. T.; Chen, P.; Berglund, L. A. Strong Reinforcement Effects in 2D Cellulose Nanofibril–Graphene Oxide (CNF–GO) Nanocomposites Due to GO-Induced CNF Ordering. J. Mater. Chem. A 2020, 8 (34), 17608–17620. (致谢BNL-NIST-LIX线站)
    23.Zhang, C.; Chen, G.; Wang, X.; Zhou, S.; Yu, J.; Feng, X.; Li, L.; Chen, P.; Qi, H. Eco-Friendly Bioinspired Interface Design for High-Performance Cellulose Nanofibril/Carbon Nanotube Nanocomposites. ACS Appl. Mater. Interfaces 2020, 12 (49), 55527–55535.
    24.Jianxin Liu, Pan Chen, Dujian Qin, Shuai Jia, Chao Jia, Lei Li, Hongli Bian, Jie Wei , Ziqiang Shao. Nanocomposites membranes from cellulose nanofibers, SiO 2 and carboxymethyl cellulose with improved properties. Carbohydrate Polymer 2020, 233 115818
    25.Mittal, N.; Ansari, F.; Gowda.V, K.; Brouzet, C.; Chen, P.; Larsson, P. T.; Roth, S. V.; Lundell, F.; Wågberg, L.; Kotov, N. A.; Söderberg, L. D. Multiscale Control of Nanocellulose Assembly: Transferring Remarkable Nanoscale Fibril Mechanics to Macroscale Fibers. ACS Nano 2018, 12 (7), 6378–6388.
    26.Li, Y.; Yu, S.; Chen, P.; Rojas, R.; Hajian, A.; Berglund, L. Cellulose Nanofibers Enable Paraffin Encapsulation and the Formation of Stable Thermal Regulation Nanocomposites. Nano Energy 2017, 34, 541–548.

    更多
新葡的京集团350vip8888(中国)有限公司·百度百科