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ABSTRACT: Thermoset polyurethane elastomers made from poly(3,3-bis(azidomethyl) oxetane with tetrahydrofuran) and various
multifunctional isocyanate cross-linkers were compared to uncover a new mechanism of modulating the mechanical properties. Extra
hydrogen bonding motifs, such as urethane or urea, were built in the cross-linkers and were proved to essentially determine the
stiffness and toughness of the elastomers, while the covalent cross-linking densities of both networks were controlled strictly at the
same level. The impact of interchain H-bonding on the mechanical properties of the polyurethane thermoset was unprecedently
emphasized and supported by evidence from Fourier-transform infrared spectroscopy (FTIR), dynamic mechanical analysis (DMA),
and low-field nuclear magnetic resonance (LFNMR).

■ INTRODUCTION
Polyurethane elastomers are an important kind of visco-elastic
material, with a relatively low elastic modulus at a certain
temperature scope and large reversible deformability.1,2

Thermoplastic polyurethane elastomers (TPE) are made up
of hard segments (HS) and flexible prepolymer soft segments
(SS). Varying the structure and content of HS by using various
isocyanates and chain extenders would allow for adjustment of
hydrogen bonding (H-bonding) strength, microphase separa-
tion structure and morphology, and physical cross-linking
degree, imparting TPE excellent mechanical properties3

(Figure 1a). Nevertheless, the reversibility of H-bonding,
which gives TPE the advantage of being able to be reprocessed,
causes segments’ transient fluidity at elevated temperature or
upon deformation, raising creep, hysteresis, and lack of long-
term mechanical performance stability. A series of multiple H-
bonding moieties, such as ureidopyrimidone with high affinity
and directionality, are introduced into TPE to achieve high
mechanical performance.4−8 However, this novel design
usually leads to changes in bulk properties and involves
nontrivial monomer synthesis.
To enhance the mechanical performance while retaining the

reprocessibility, polyurethane-based vitrimers or covalent
adaptable networks have attracted extensive attention
recently.9−11 Many dynamic covalent bonds have been
introduced into the polyurethane thermoset to endow the
network with malleability under certain stimuli, such as

disulfide,12,13 furan-maleimide,14 acetal,14 and oxime.15,16

Besides, the transcarbomoylation exchange reaction is also
taken advantage of to facilitate the reshuffling of polyurethane
chains at elevated temperature or with the assistance of a
catalyst.9,17,18 The novel dynamic covalent polyurethane
network is still in the exploring state and requires further
study before being put into wider applications.
Conventional covalently cross-linked thermoset polyur-

ethane elastomers, based on SS strands and cross-links (usually
made from isocyanates and low-molecular-weight polyols, thus
defined as HS in thermosets), are handily prepared and are still
predominant in many special application scenarios because
they could effectively retain the network topology features,
dimensional stability, creep, and chemical resistance.19

However, the systematic analysis of the mechanical properties
of polyurethane thermosets is not as rich as that of TPE. The
majority of the strategies on tuning their mechanical properties
have been focused on adjusting the cross-linking density, SS
prepolymer modification and blending, mixing of cross-linkers
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ABSTRACT: Covalent adaptable networks (CANs) typically require
external catalysts for efficient cross-linker exchange, which can limit
network reprocessability due to catalyst leaching and degradation. In
this study, catalysts were avoided by using a bicyclo[3.3.1]nonane bis-
alkyl halide cross-linker with sulfur-atom neighboring group partic-
ipation (NGP) to increase the rate of bond exchange. Stress relaxation
analyses demonstrate that the resultant pyridine-based network has an
Arrhenius dependence on viscous flow at elevated temperatures (130−
170 °C), which arises from SN1 transalkylation exchange. This thermally
mediated cross-link interchange and associated flow behavior enabled reprocessing of the ionic networks over multiple damage and
repair cycles. Additionally, these NGP-based CANs are chemically recyclable, allowing for recovery of the pyridyl-based polymer
starting material, which comprises >90 wt % of the parent network. The dual thermal and chemical recycling potential of this
catalyst-free CAN platform addresses key criteria for designing thermosets with extended lifecycles.

■ INTRODUCTION
Covalently cross-linked polymer networks, better known as
thermosets, have become ubiquitous materials owing to their
solvent resistance, mechanical strength, as well as thermal and
dimensional stability.1,2 While covalent cross-linking imbues
thermosets with desirable properties, it comes at the expense of
recyclability and sustainability. To combat the environmental
challenges posed by traditional thermoset end-of-life fates
(landfilling and incineration), the pursuit of reprocessable and
chemically recyclable alternatives holds significant promise for
future polymer science research targets.3−5

To develop thermoset plastics and rubbers with more
circular lifecycles, a class of networks composed of cross-links
that exchange in response to an external stimulus has been
developed and termed covalent adaptable networks (CANs).6

These CANs combine two long-established phenomena:
dynamic covalent chemistry and chemical stress relaxation.7−9

More than 70 years ago, Tobolsky and Stern demonstrated
that polysulfide rubbers underwent stress relaxation at elevated
temperatures upon application of a step strain.9 Shortly
thereafter, this stress decay process, dubbed chemorheology,
was observed in silicone and polyurethane elastomers.10−12

Such chemical stress relaxation arises from dynamic covalent
bonds (e.g., disulfides) within the network, which undergo
reversible exchange when exposed to elevated temperatures
and typically, the presence of a catalyst.10,11

As the field of CANs has matured and the range of cross-
linker exchange chemistries expanded,13 addressing common
CAN limitations, such as the need for external catalysts, has

become a major research focus.14,15 For the purposes of this
study, external catalysts are categorized as organic or inorganic
molecules that are (1) not covalently bound to the network
and (2) facilitate the thermal activation of dynamic covalent
bonds. Although these catalytic additives are beneficial for
lowering the energetic barrier for cross-linker exchange, they
can promote degradation pathways within the surrounding
polymer matrix at the high temperatures often needed to
induce macroscopic flow in dynamic networks. Additionally,
external catalysts can leach from CANs when exposed to
solvents and have their own intrinsic thermal degradation
profiles, which must be considered in conjunction with those
of the bulk network. As a result, catalyst loss via degradation
and/or leaching converts cross-links from dynamic to
permanent, which impedes recyclability goals.
Recently, neighboring group participation (NGP) has been

implemented with transesterification-based CANs as a strategy
to replace external catalysts.16−18 Formally, NGP occurs when
an atom or a functional group (e.g., π-bond) intramolecularly
forms a bond (or partial bond) to the reaction site, stabilizing
the resulting transition state or intermediate.19 When NGP
imparts stabilization in the rate-determining step of the
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Abstract: Polyurethane elastomer (PUE), which is widely used in coatings for construction, trans-
portation, electronics, aerospace, and other fields, has excellent physical properties. However,
polyurethane elastomers are flammable, which limits their daily use, so the flame retardancy of
polyurethane elastomers is very important. Reactive flame retardants have the advantages of little
influence on the physical properties of polymers and low tendency to migrate out. Due to the remark-
able needs of non-halogenated flame retardants, phosphorus flame retardant has gradually stood
out as the main alternative. In this review, we focus on the fire safety of PUE and provide a detailed
overview of the current molecular design and mechanisms of reactive phosphorus-containing, as well
as P-N synergistic, flame retardants in PUE. From the structural characteristics, several basic aspects
of PUE are overviewed, including thermal performance, combustion performance, and mechanical
properties. In addition, the perspectives on the future advancement of phosphorus-containing flame-
retarded polyurethane elastomers (PUE) are also discussed. Based on the past research, this study
provides prospects for the application of flame-retarded PUE in the fields of self-healing materials,
bio-based materials, wearable electronic devices, and solid-state electrolytes.

Keywords: polyurethane elastomer; phosphorus flame retardant; reactive flame retardant; fire protection

1. Introduction to Polyurethane Elastomers

Polyurethane elastomer (PUE) is a typical block polymer with alternately arranges
soft and hard segments [1,2]. Isocyanates and small molecular chain extenders constitute
the hard segment, and the soft segment is composed of polyols (shown in Figure 1).
Compounds containing two or more -OH groups with a molecular weight of more than
500 g/mol are defined as polyols, while those smaller molecules with hydroxyl groups
and/or amines are regarded as chain extenders.

The abundant hydrogen bonds physically cross-link the linear chains to form network
structures, resulting in microscopic phase separation between soft and hard segments [3].
The mobility of the soft segment makes the PUE elastic, while the hard segment hinders
the rotation of the molecular chain, giving the PUE hardness and mechanical strength [4].
The unique micro-phase structure of PUE endows it with wear resistance, toughness, and
good processability of thermoplastics [5]. The combination of “tough and strong” greatly
expands the application of PUE.

Polymers 2023, 15, 3711. https://doi.org/10.3390/polym15183711 https://www.mdpi.com/journal/polymers
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Dual nucleation sites induced by ZIF-67 towards mismatch of 
polyphosphazene hollow sub-micron polyhedrons and nanospheres in 
flame retardant epoxy matrix 

Xiaoning Song a, Boyou Hou a, Zhengde Han a, Ye-Tang Pan a,*, Zhishuai Geng a,*, 
Laia Haurie Ibarra b, Rongjie Yang a 

a National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR 
China 
b School of Building Construction (EPSEB), Universitat Politècnica de Catalunya, Av. Doctor Marañon 44, Barcelona 08028, Spain   

A R T I C L E  I N F O   

Keywords: 
Metal-organic frameworks 
Polyphosphazene 
Dispersion 
Epoxy resin 
Fire safety 

A B S T R A C T   

Polyphosphazene has drawn an abundance of attention as a flame retardant due to its eco-friendliness and 
phosphorus-nitrogen synergistic effect. ZIF-67 and cobalt compounds derived from cobalt ions released by ZIF-67 
were employed as dual templates for loading polyphosphazene. We skillfully designed a polyphosphazene hollow 
hybrid material via the polymerization of phosphazene accompanied by the etching of ZIF-67 and cobalt com
pounds by generated HCl. The hybrid material (CPPHS) was composed of cobalt-doped polyphosphazene hollow 
sub-micron polyhedrons (CP) and polyphosphazene hollow nanospheres (PHNS) with different dimensions and 
magnitudes of sizes. After adding 2.0 wt% CPPHS, the limiting oxygen index of epoxy resin increased to 27.6%, 
while the peak heat release rate and total smoke production decreased by 40.1% and 38.8%, respectively. 

The formation of a continuous and strongly extended dense char layer in the EP composites was fostered by the 
synergistic effect of Co-P-N flame retardant components, significantly decreasing the heat flow and combustible 
gas exchange rate and effectively hindering the combustion chain reaction. Furthermore, the unique dimensional 
mismatch structure of CPPHS enhanced its dispersion in the EP matrix, enabling the EP to have superior me
chanical properties that match realistic application requirements, consequently expanding the variety of appli
cations for fire-resistant EP composites.   

1. Introduction 

Epoxy resin (EP) is a common and basic thermosetting resin that is 
widely used in construction, transportation, aerospace, and electronics 
owing to its remarkable chemical stability, strong bonding strength, low 
shrinkage, ease of processing, and cost-effectiveness [1–3]. However, 
like most polymer materials, EP has two distinct drawbacks: flamma
bility and toxicity of smoke. Additionally, the high cross-link density of 
EP leads to poor toughness and low fracture energy, restricting its 
development in the field of advanced materials [4–6]. Thus, improving 
the flame retardancy, smoke suppression, and mechanical qualities of EP 
is of great importance in engineering [7]. The combination of phos
phorus and nitrogen-based flame retardants has shown great potential in 
enhancing flame retardancy through heat insulation, smoke suppres
sion, and low toxicity. Polyphosphazene is a type of organic–inorganic 

hybrid material with a unique nitrogen-phosphorus structural unit. 
Owing to the synergistic effect between phosphorus and nitrogen, pol
yphosphazene is endowed with excellent thermal stability and flame 
retardancy, which is also key to its research as a flame retardant [8]. The 
synthesis route of linear polyphosphazenes is strictly controlled and the 
yield is limited. On the contrary, cyclomatrix polyphosphazenes are 
synthesized by a simpler method, and the yield is as high as 90%. By 
virtue of the highly cross-linked rigid structures, as well as strong mo
lecular designability, cyclomatrix polyphosphazenes have become a 
major focus of research in the field of phosphorus-based flame re
tardants [9,10]. Yang et al. [11] prepared a novel polyphosphazene 
(PBFA) containing an active amine group in order to improve the fire 
safety of EP composites. When the addition amount was 9.0 wt%, the 
peak heat release rate (pHRR) and total smoke production (TSP) of EP/ 
PBFA composites decreased by 46.7% and 48.0%, respectively. Lou et al. 

* Corresponding authors. 
E-mail addresses: pyt@bit.edu.cn (Y.-T. Pan), zhishuai.geng@bit.edu.cn (Z. Geng).  
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Abstract

Click chemistry is one of the most powerful strategies for constructing poly-

meric soft materials with precise control over architecture and functionality.

In this review, we provide a comprehensive summary of the state-of-the art for

synthesizing functional polymers and their expanding range of applications.

The synthetic and mechanistic aspects are discussed for key reactions that ful-

fill “click” requirements and their applications in construction of macromole-

cules with linear, branched, and other complex architectures are described.

KEYWORD S

click chemistry, macromolecules, synthesis, polymerization, postpolymerization
modification

1 | INTRODUCTION

There is an increasing necessity for polymeric materials
with precise control over architecture, functionality, and
reactivity in a range of industrial and academic settings.
To fulfill these requirements, researchers have sought to
prepare and functionalize polymer systems via simple
and high-yielding chemistry. This is in accord with the
“click” chemistry philosophy initially described by Sharp-
less and coworkers in 2001—modularity, mild reaction
conditions, and quantitative yields.1 Following this inspi-
ration, polymer science has witnessed a broad adaption
of click chemistries to afford macromolecular materials
tailored for various applications. The scope of click

chemistry has also broadened as additional reactions are
developed. Combined with controlled polymerization
techniques, these efficient transformations have enabled
complex architectures to be easily obtained.

This review is divided into three sections that high-
light applications of a wide range of click chemistries for
polymer synthesis and functionalization. We begin with
an introduction of current reactions that fit the philoso-
phy of click chemistry, including the traditional click
reactions such as azide-alkyne cycloaddition (AAC),
thiol-ene, and Diels–Alder reactions. In addition, we
focus on the discussion of emerging and underdeveloped
click reactions, such as oxime ligation, triazolinedione
(TAD)-based chemistry, and Sulfur(VI)-Fluoride
Exchange (SuFEx), particularly in terms of mechanism,
substrate scope, and orthogonality. The following
section describes the use of these click chemistries for
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equally to this work.
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